Cuneiform tablets originating in second millennium BCE
Babylonian scribal schools preserve exercises and calculations
recorded by teachers and pupils, ranging from practical
arithmetic to problems well beyond everyday applications.
Before Pythagoras: The Culture of Old Babylonian Mathematics
presents an unprecedented grouping of tablets from the first
golden age of mathematics, highlighting both classroom training
and advanced curiosity-driven mathematics.

Numbers on Clay was written by Alexander Jones, Professor of the History of the
Exact Sciences in Antiquity (ISAW).

The exhibition Before Pythagoras: The Culture of Old Babylonian Mathematics
is curated by Alexander Jones and Christine Proust and is on view at ISAW from
November 12th-December 17th, 2010.

Line drawings by Alexander Jones.

Front and back cover: Old Babylonian “hand tablet” illustrating Pythagoras’
Theorem and an approximation of the square root of two. Clay, 19th—17th century BCE,
Yale Babylonian Collection YBC 7289. Photo by West Semitic Research.

TABLETS

Clay tablets were the principal writing medium in Mesopotamia.
Tablets were usually shaped as rectangles of a size convenient
for the information that they were intended to hold, though
small “hand-tablets” used for practice writing and calculations
sometimes had a round, lentil-like shape. One face (the obverse)
was normally flat, the other (the reverse) slightly convex. Each
face might be divided into columns. A tablet was usually flipped
vertically, with the bottom of the obverse serving as the top

of the reverse. Old Babylonian texts were written from left to
right; but in a tablet with multiple columns, the first column of
the reverse was sometimes at the far right.

CUNEI FORM WRITI NG
A ND NUMERALS

The writing instrument was a stylus, normally a reed stalk with
a bevelled end. The angle at which the stylus was pressed in the
clay resulted in either nail-shaped or chevron-shaped impressions
that gave the style of writing its name, cuneiform (from the
Latin for “wedge shaped”). The systems of cuneiform writing
that evolved in the late fourth and third millennia BcE for
Sumerian and Akkadian, the two languages of Mesopotamia,
were extremely complex, with hundreds of distinct signs. The
basic signs for numbers, however, were extremely simple. They
were made by repeating two signs, | meaning 1, and <« meaning
10 as many times as needed to make up the desired number.
These are all the signs needed to write numbers from 1 to 59:
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In writing numbers above 10, the sign for the tens was put to
the left of the sign for units; for example, 47 is written 4F.

A PLACES-VALUE
SYSTEM

Near the end of the third millennium BCE, scribes developed a
way of writing numbers that was very convenient for calculations.
Multiplication and division were particularly cumbersome when
the quantities were expressed in mixed units of measure, like
yards, feet, and inches as used today. In the new system only
the symbols representing the numbers 1 through 59 (T through
4¥%) were used, but any of these symbols could have any of a
range of different values from very large to very small, accord-
ing to a scale based on multiplying or dividing by 60.

Example: M could mean 3
or 180 (3x60)
or 10800 (3x60x60)
Or /1 (3+60)
Oor /4200 (3+60+60)

Any quantity could be broken up into a series of such parts,
written from left to right in descending order of size. For example
214'/4 would be broken up into 3 sixties, plus 34, plus 15 sixtieths,
and written M «¥ <¥, When we translate this kind of numeral,
we write commas between the parts for clarity—“3,34,15” in
this example.

As with present-day Hindu-Arabic numerals, these Babylonian
numerals operate within a place-value system, meaning that
the value of a symbol can be larger or smaller depending on its
place in the whole numeral. The system is called sexagesimal
(from the Latin for “sixty”) because it is based on counting in
groups of 60—in contrast to the Hindu-Arabic system, which is
called decimal because it is based on groups of 10.

There is another important difference between our decimal
numerals and the Babylonian sexagesimal numerals. In the
decimal system the last digit of a number, or the last digit before
the decimal point, always means units. If necessary we use the
symbol “0” to occupy empty places so that the value of every
digit is unambiguous. There was no cuneiform sign functioning
as a zero until long after the Old Babylonian Period, and there
was never a symbol similar to a decimal point to separate a whole
number from a fraction. The order of magnitude of a number
written in the sexagesimal notation was thus always ambiguous.

In Old Babylonian mathematics, the sexagesimal notation
was used for intermediate calculations, or in abstract calculations
as in Plimpton 322 (13 in this exhibition). More than a thou-
sand years later, it provided the number system for Babylonian
astronomy, and by a long course of transmission it has come
down to us in the form of our division of hours (and angular
degrees) into 60 minutes and 3600 seconds.

Several of the tablets in this exhibition consist mostly of
numbers, and they can easily be read without any knowledge of
the Akkadian or Sumerian language. A good tablet with which
to begin reading cuneiform numerals is the multiplication table
B6063 (6).

Units of measure used in the tablets.

Units of length:
/60 US = 1 ninda = 12 cubits = 360 fingers

Units of area:
/600 eSe = 1 SAR = 60 gin = 10800 Se = 144 square cubits

Units of volume:
100 iku = 1 SAR = 60 gin = 10800 Se = 144 cubic cubits

Units of weight (including silver):
1 ma-na = 60 gin = 10800 se
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TRANSLATI ONS FROM
SELECTED TABLETS

For tablets in which the layout is important, we provide a line-
drawing of the tablet with the texts translated into English and
into modern numerals, but preserving the sexagesimal notation.
In the notes and the object labels we have made some arbitrary
assumptions about which place in a series of sexagesimal numer-
als represents units. Some expressions in the texts have been
paraphrased or modernized for clarity.

1. Yale Babylonian Collection YBC 10529, obverse.
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The left-hand column lists whole numbers from 56 through 71.
The right-hand column gives each number’s reciprocal, some-
times wrapping around the edge of the tablet. Down to the
reciprocal of 60 in the fifth line, the first numeral should be
interpreted as sixtieths; in the remainder of the table, the first
numeral is a sixtieth of a sixtieth. Only the reciprocals of 60
and 64 are exact. There are several errors; for example, the
approximate reciprocal of 63 should be 57,8,34.

3. University of Pennsylvania Museum B11318, obverse.
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The problem and its solution are written in the lower right cor-
ner, and the intermediate calculations in the upper left corner.
The problem would have been trivial if the student had been
allowed to give the answer in square cubits; but he was required
to express the result in the area units gin and Se. The student
first converted the given length into the larger unit ninda, then
used sexagesimal arithmetic to find the area in SAR, and finally
converted this result to gin and Se. (The two 15s in the upper
left are each mistakes for 5.)

6. University of Pennsylvania B6063, obverse.
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7. University of Pennsylvania 55-21-357, obverse.
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The reciprocal of 4,26,40 (i.e., %/27) is actually 13,30 (i.e., ¥’/2).
Omne way to find the reciprocal would be to divide 4,26,40 by
two, yielding 2,13,30, which is listed in the standard reciprocal
tables as the reciprocal of 27. Taking half of 27 gives the correct
answer. The student only carried out the first step, but the double
ruled line and the label “reciprocal” suggest that he thought be
had solved the problem.

8. Yale Babylonian Collection YBC 11120, obverse.
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9. Yale Babylonian Collection YBC 7164, selected problems.

(Problem 1) A little canal. Its length is 5 US, its width is
3 cubits, its depth is 3 cubits. A worker’s daily load of
earth is 10 gin. A worker’s daily wages are 6 Se of silver.
What is the canal’s surface area, its volume, the number
of workers needed to dig it, and the total cost in silver?
Answer: The area is 75 SAR, the volume is 2 iku and 25
SAR, the number of workers is 1290, and the total cost is
/3 ma-na and § gin of silver.

(Problem 2) A little canal. Its length is 5 US, its width
is 3 cubits, its depth is 3 cubits. For the first cubit of depth,
a worker’s daily load of earth is '/3 SAR; for the depth of the

next two cubits, a worker’s daily load is 10 gin. What length
of canal did one man dig per day? Answer: 3 cubits 6 fingers.

10. Yale Babylonian Collection YBC 4663, selected problems.
Italics indicate additions made to the translation for clarity.

(Obverse, Problem 3) The total cost in silver of digging a
trench is 9 gin. Its length is 5 ninda, and its depth is /2 ninda.
A worker’s daily load of earth is 10 gin, and a worker’s
daily wages are 6 Se of silver. What is the canal’s width?
Solution: Multiply the length and the depth, and you will
get 30. Take the reciprocal of the workload, multiply by
30, and you will get 3. Multiply the wages by 3, and you
will get 6. Take the reciprocal of 6, and multiply it by 9,
the total cost in silver, and you will get its width. 1'/> ninda
is the width. Such is the procedure.

(Reverse, Problem 8) The total cost in silver of digging
a trench is 9 gin. The length exceeded the width by 3,30
(i.e., 3 1/2) ninda. Its depth is '/2 ninda. A worker’s daily
load of earth is 10 gin, and a worker’s daily wages are 6 Se
of silver. What are the length and the width? Solution: Take
the reciprocal of the wages, and multiply by 9, the total
cost in silver, and you will get 4,30. Multiply 4,30 by the
workload, and you will get 45. Take the reciprocal of /2
ninda, and multiply by 45, and you will get 7,30. Take half
of the amount by which the length exceeded the width, and
you will get 1,45. Make the square of 1,45, and you will
get 3,3,45. Add 7,30 to 3,3,45, and you will get 10,33,45.
Take its square root, and you will get 3,15. Operate with
3,15 in two ways: add 1,45 to the one, and subtract 1,45
from the other, and you will get the length and the width.
5 ninda is the length, and 1'/> ninda is the width. Such is
the procedure.

11. Yale Babylonian Collection YBC 4713, selected problems.
Italics indicate additions made to the translation for clarity.

(Problem 2) The area equals 1 eSe (i.e., 10,0). I multiplied
the length by a certain number, and got 2,30. I multiplied the
width by a certain number, and got 1,20. The number I
multiplied by the length exceeds by 1 the number I multi-
plied by the width. What are the length and width?

(Problem 3) Instead of the last condition in Problem 2:
Half the number I multiplied by the length plus 1,30 equals
the number I multiplied by the width.

(Problem 4) Instead of the last condition in Problem 2:
Two-thirds of the number I multiplied by the length plus
40 equals the number I multiplied by the width.

(Problem 5) Instead of the last condition in Problem 2:
I added one-third of the amount by which the number I
multiplied by the length exceeds the number I multiplied by
the width, plus the number I multiplied by the length, and
I got 5,20.

(Problem 6) In the last condition of Problem 5, instead
of adding one-third of the excess of the two numbers, I multi-
plied one-third of the excess by 2, and I added the number
I multiplied by the length, and I got 5,40.

(Problem 7) In the last condition of Problem 5, instead
of adding the number I multiplied by the length, 1 subtracted
the number I multiplied by the length, and I got 4,40.

12. Yale Babylonian Collection YBC 7289, obverse.

The approximate decimal equivalent of 1,24,51,10 is
1.41421296 . . .; the actual value of the square root of 2
is 1.41421356. . ..

13. Columbia University Plimpton 322, obverse.
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The column headed square width gives the length of the shortest
leg of a right triangle (or the width of a rectangle); the column
headed square diagonal gives the hypotenuse of the triangle (or
the diagonal of the rectangle). The length of the other leg (or the
rectangle’s length) was not given on the tablet, but it can be
calculated by Pythagoras’ Theorem as the square root of the
difference of the squares of the other two lengths. For example,
in the eleventh row 75* — 45% = 602, so that the triangle has
sides 45, 60, and 75 and is effectively the well-known 3-4-§
Pythagorean triangle. There are six errors in the numbers on
the tablet.





